jueves, 11 de septiembre de 2008

grasa y aceites para motos

calibrador también denominado cartabón de corredera o pie de rey, es un instrumento para medir dimensiones de objetos relativamente pequeños, desde centímetros hasta fracciones de milímetros (1/10 de milímetro, 1/20 de milímetro, 1/50 de milímetro).
En la escala de las pulgadas tiene divisiones equivalentes a 1/16 de pulgada, y, en su nonio, de 1/128 de pulgadas.
El inventor de este instrumento fue el matemático francés
Pierre Vernier (1580 (?) - 1637 (?)), y a la escala secundaria de un calibre destinada a apreciar fracciones de la unidad menor, se la conoce con el nombre de Vernier en honor a su inventor. En castellano se utiliza con frecuencia la voz nonio para definir esa escala.
Consta de una "regla" con una escuadra en un extremo, sobre la cual se desliza otra destinada a indicar la medida en una escala. Permite apreciar longitudes de 1/10, 1/20 y 1/50 de
milímetro utilizando el nonio.
Mediante piezas especiales en la parte superior y en su extremo, permite medir dimensiones internas y profundidades.
Posee dos escalas: la inferior milimétrica y la superior en pulgadas
1 Historia
2 Componentes de un pie de rey.
3 Otros tipos de pie de rey
4 Fuentes
5 Véase también
6 Enlaces externos
//

Historia
Se atribuye al cosmógrafo y matemático portugués
Pedro Núñez (1492-1577), que inventó el nonio o nonius, origen del pie de rey. También se ha llamado al pie de rey Vernier, porque hay quien atribuye su invento al geómetra Pedro Vernier (1580-1637), aunque Vernier lo que verdaderamente inventó fue la regla de cálculo Vernier, que ha sido confundida con el Nonio inventado por Pedro Núñez.

Componentes de un pie de rey.

Componentes del pie de rey
Mordazas para medidas externas.
Mordazas para medidas internas.
Coliza para medida de profundidades.
Escala con divisiones en centímetros y milímetros.
Escala con divisiones en pulgadas y fracciones de pulgada.
Nonio para la lectura de las fracciones de milímetros en que esté dividido.
Nonio para la lectura de las fracciones de pulgada en que esté dividido.
Botón de deslizamiento y freno.

Otros tipos de pie de rey

Pie de rey digital
Cuando se trata de medir diámetros de agujeros grandes que no alcanza la capacidad del pie de rey normal, se utiliza un pie de rey diferente llamado de tornero, que solo tiene las mordazas de exteriores con un mecanizado especial que permite medir también los agujeros.
Cuando se trata de medir profundidades superiores a la capacidad del pie de rey normal existen unas varillas graduadas de diferente longitud que permiten medir la profundidad que sea.
Existen en la actualidad calibres con lectura directa digital.

Fuentes

Calibre para medir troncos de árboles
Millán Gómez, Simón (2006), Procedimientos de Mecanizado, Madrid: Editorial Paraninfo.
ISBN 84-9732-428-5.
Patxi Aldabaldetrecu (2000), Máquinas y Hombres Guía histórica, Museo de Máquina-Herramienta Elgoibar (Guipúzcoa).
ISBN 84-607-0156-5. Historia del Pie de Rey. Página 227


Commons
Wikimedia Commons alberga contenido multimedia sobre Calibre (instrumento).
Nonio
Vernier
Tornillo de Palmer

Enlaces externos
Simulador de lectura e interpretación de calibre:
Calibre en milímetro con precisión 0,02mm
Calibre en milímetro con precisión 0,05mm
Calibre pulgada fraccionada
Simulador de prácticas de lectura e interpretación - nonio
Obtenido de "
http://es.wikipedia.org/wiki/Calibre_(instrumento)"
Categorías: Instrumentos de medición Herramientas manuales Metrología
Vistas
Artículo
Discusión
Editar
Historial
Herramientas
r

pie de rey

El calibre, también denominado cartabón de corredera o pie de rey, es un instrumento para medir dimensiones de objetos relativamente pequeños, desde centímetros hasta fracciones de milímetros (1/10 de milímetro, 1/20 de milímetro, 1/50 de milímetro).
En la escala de las pulgadas tiene divisiones equivalentes a 1/16 de pulgada, y, en su nonio, de 1/128 de pulgadas.
El inventor de este instrumento fue el matemático francés
Pierre Vernier (1580 (?) - 1637 (?)), y a la escala secundaria de un calibre destinada a apreciar fracciones de la unidad menor, se la conoce con el nombre de Vernier en honor a su inventor. En castellano se utiliza con frecuencia la voz nonio para definir esa escala.
Consta de una "regla" con una escuadra en un extremo, sobre la cual se desliza otra destinada a indicar la medida en una escala. Permite apreciar longitudes de 1/10, 1/20 y 1/50 de
milímetro utilizando el nonio.
Mediante piezas especiales en la parte superior y en su extremo, permite medir dimensiones internas y profundidades.
Posee dos escalas: la inferior milimétrica y la superior en pulgadas.

Tabla de contenidos
1 Historia
2 Componentes de un pie de rey.
3 Otros tipos de pie de rey
4 Fuentes
5 Véase también
6 Enlaces externos


Historia
Se atribuye al cosmógrafo y matemático portugués
Pedro Núñez (1492-1577), que inventó el nonio o nonius, origen del pie de rey. También se ha llamado al pie de rey Vernier, porque hay quien atribuye su invento al geómetra Pedro Vernier (1580-1637), aunque Vernier lo que verdaderamente inventó fue la regla de cálculo Vernier, que ha sido confundida con el Nonio inventado por Pedro Núñez.

COMPONENTES DE PIE DE REY

Componentes del pie de rey
Mordazas para medidas externas.
Mordazas para medidas internas.
Coliza para medida de profundidades.
Escala con divisiones en centímetros y milímetros.
Escala con divisiones en pulgadas y fracciones de pulgada.
Nonio para la lectura de las fracciones de milímetros en que esté dividido.
Nonio para la lectura de las fracciones de pulgada en que esté dividido.
Botón de deslizamiento y freno.

OTROS TIPOS DE PIE DE REY
Pie de rey digital
Cuando se trata de medir diámetros de agujeros grandes que no alcanza la capacidad del pie de rey normal, se utiliza un pie de rey diferente llamado de tornero, que solo tiene las mordazas de exteriores con un mecanizado especial que permite medir también los agujeros.
Cuando se trata de medir profundidades superiores a la capacidad del pie de rey normal existen unas varillas graduadas de diferente longitud que permiten medir la profundidad que sea.
Existen en la actualidad calibres con lectura directa digital.


miércoles, 27 de agosto de 2008

MOTOR A GASOLINA

MOTOR A GASOLINA


.
FUNCIONAMIENTO DE UN MOTOR TÍPICO DE GASOLINA DE CUATRO TIEMPOS
Ciclos de tiempo del motor de combustion interna
Los motores de combustión interna pueden ser de dos tiempos, o de cuatro tiempos, siendo los motores de gasolina de cuatro tiempos los más comúnmente utilizados en los coches o automóviles y para muchas otras funciones en las que se emplean como motor estacionario.Una vez que ya conocemos las partes, piezas y dispositivos que conforman un motor de combustión interna, pasamos a explicar cómo funciona uno típico de gasolina.Como el funcionamiento es igual para todos los cilindros que contiene el motor, tomaremos como referencia uno sólo, para ver qué ocurre en su interior en cada uno de los cuatro tiempos:
Admisión
Compresión
Explosión
Escape

Ciclos de tiempos de un motor de combustión interna: 1.- Admisión. 2.- Compresión. 3.- Explosión.4.- Escape. (Clic sobre la imagen para ver el motor funcionando).
Funcionamiento del motor de combustión interna de cuatro tiempos
Primer tiempoAdmisión.- Al inicio de este tiempo el pistón se encuentra en el PMS (Punto Muerto Superior). En este momento la válvula de admisión se encuentra abierta y el pistón, en su carrera o movimiento hacia abajo va creando un vacío dentro de la cámara de combustión a medida que alcanza el PMI (Punto Muerto Inferior), ya sea ayudado por el motor de arranque cuando ponemos en marcha el motor, o debido al propio movimiento que por inercia le proporciona el volante una vez que ya se encuentra funcionando. El vacío que crea el pistón en este tiempo, provoca que la mezcla aire-combustible que envía el carburador al múltiple de admisión penetre en la cámara de combustión del cilindro a través de la válvula de admisión abierta.Segundo tiempoCompresión.- Una vez que el pistón alcanza el PMI (Punto Muerto Inferior), el árbol de leva, que gira sincrónicamente con el cigüeñal y que ha mantenido abierta hasta este momento la válvula de admisión para permitir que la mezcla aire-combustible penetre en el cilindro, la cierra. En ese preciso momento el pistón comienza a subir comprimiendo la mezcla de aire y gasolina que se encuentra dentro del cilindro.Tercer tiempoExplosión.- Una vez que el cilindro alcanza el PMS (Punto Muerto Superior) y la mezcla aire-combustible ha alcanzado el máximo de compresión, salta una chispa eléctrica en el electrodo de la bujía, que inflama dicha mezcla y hace que explote. La fuerza de la explosión obliga al pistón a bajar bruscamente y ese movimiento rectilíneo se transmite por medio de la biela al cigüeñal, donde se convierte en movimiento giratorio y trabajo útil.Cuarto tiempoEscape.- El pistón, que se encuentra ahora de nuevo en el PMI después de ocurrido el tiempo de explosión, comienza a subir. El árbol de leva, que se mantiene girando sincrónicamente con el cigüeñal abre en ese momento la válvula de escape y los gases acumulados dentro del cilindro, producidos por la explosión, son arrastrados por el movimiento hacia arriba del pistón, atraviesan la válvula de escape y salen hacia la atmósfera por un tubo conectado al múltiple de escape.De esta forma se completan los cuatro tiempos del motor, que continuarán efectuándose ininterrumpidamente en cada uno de los cilindros, hasta tanto se detenga el funcionamiento del motor.
CICLO OTTOEl motor de gasolina de cuatro tiempos se conoce también como “motor de ciclo Otto”, denominación que proviene del nombre de su inventor, el alemán Nikolaus August Otto (1832-1891).El ciclo de trabajo de un motor Otto de cuatro tiempos, se puede representar gráficamente, tal como aparece en la ilustración de la derecha.
Esa representación gráfica se puede explicar de la siguiente forma:1. La línea amarilla representa el tiempo de admisión. El volumen del cilindro conteniendo la mezcla aire-combustible aumenta, no así la presión.2. La línea azul representa el tiempo de compresión. La válvula de admisión que ha permanecido abierta durante el tiempo anterior se cierra y la mezcla aire-combustible se comienza a comprimir. Como se puede ver en este tiempo, el volumen del cilindro se va reduciendo a medida que el pistón se desplaza. Cuando alcanza el PMS (Punto Muerto Superior) la presión dentro del cilindro ha subido al máximo.3. La línea naranja representa el tiempo de explosión, momento en que el pistón se encuentra en el PMS. Como se puede apreciar, al inicio de la explosión del combustible la presión es máxima y el volumen del cilindro mínimo, pero una vez que el pistón se desplaza hacia el PMI (Punto Muerto Inferior) transmitiendo toda su fuerza al cigüeñal, la presión disminuye mientras el volumen del cilindro aumenta.4. Por último la línea gris clara representa el tiempo de escape. Como se puede apreciar, durante este tiempo el volumen del cilindro disminuye a medida que el pistón arrastra hacia el exterior los gases de escape sin aumento de presión, es decir, a presión normal, hasta alcanzar el PMS..El sombreado de líneas amarillas dentro del gráfico representa el "trabajo útil" desarrollado por el motor.




motor de dos tiempos


El motor de dos tiempos, también denominado motor de dos ciclos, es un motor de combustión interna que realiza las cuatro etapas del ciclo termodinámico (admisión, compresión, expansión y escape) en dos movimientos lineales del pistón (una vuelta del cigüeñal). Se diferencia del más común motor de cuatro tiempos de ciclo de Otto, en que este último realiza las cuatro etapas en dos revoluciones del cigüeñal.
tabla de contenidos
1 Características
2 Funcionamiento
2.1 Fase de admisión-compresión
2.2 Fase de potencia-escape
3 Combustible
4 Tipos de motores de dos tiempos
5 Ventajas e inconvenientes
5.1 Ventajas
5.2 Inconvenientes
6 Aplicaciones


Características
El motor de dos tiempos se diferencia en su construcción del motor de cuatro tiempos en las siguientes características:
Ambas caras del pistón realizan una función simultáneamente, a diferencia del motor de cuatro tiempos en que únicamente es activa la cara superior.
La entrada y salida de gases al motor se realiza a través de las lumbreras (orificios situados en el
cilindro). Este motor carece de las válvulas que abren y cierran el paso de los gases en los motores de cuatro tiempos. El pistón dependiendo de la posición que ocupa en el cilindro en cada momento abre o cierra el paso de gases a través de las lumbreras.
El
cárter del cigüeñal debe estar sellado y cumple la función de cámara de precompresión. En el motor de cuatro tiempos, por el contrario, el cárter sirve de depósito de lubricante.
La lubricación, que en el motor de cuatro tiempos se efectúa mediante el cárter, en el motor de dos tiempos se consigue mezclando aceite con el
combustible en una proporción que varía entre el 2 y el 5 por ciento. Dado que esta mezcla está en contacto con todas las partes móviles del motor se consigue la adecuada lubricación.

Funcionamiento


Fase de admisión-compresión
El pistón se desplaza hacia arriba (la
culata) desde su punto muerto inferior, en su recorrido deja abierta la lumbrera de admisión. Mientras la cara superior del pistón realiza la compresión en el cilindro, la cara inferior succiona la mezcla aire combustible a través de la lumbrera. Para que esta operación sea posible el cárter ha de estar sellado. Es posible que el pistón se deteriore y la culata se mantenga estable en los procesos de combustión.

Fase de potencia-escape
Al llegar el pistón a su punto muerto superior se finaliza la compresión y se provoca la
combustión de la mezcla gracias a una chispa eléctrica producida por la bujía. La expansión de los gases de combustión impulsa con fuerza el pistón que transmite su movimiento al cigüeñal a través de la biela.
En su recorrido descendente el pistón abre la
lumbrera de escape para que puedan salir los gases de combustión y la lumbrera de transferencia por la que la mezcla aire-combustible pasa del cárter al cilindro. Cuando el pistón alcanza el punto inferior empieza a ascender de nuevo, se cierra la lumbrera de transferencia y comienza un nuevo ciclo.

Combustible
Muchos de los motores de dos tiempos, emplea una mezcla de gasolina sin plomo y aceite a una proporción de 1:40 a 1:50, siendo la gasolina el agente de mayor presencia.

Tipos de motores de dos tiempos
Para entender el funcionamiento del motor de dos tiempos, es necesario saber de qué tipo de motor se trata, porque los distintos tipos de motor actúan de maneras diferentes.
Los tipos de diseño del motor de dos tiempos varían de acuerdo con el método de entrada de la mezcla aire/combustible, el método de barrido del cilindro (intercambio de gases de combustión por mezcla fresca) y el método de agotar el cilindro.
Estas son las principales variaciones, que pueden encontrarse individualmente o combinadas entre sí.
Puerto del pistón Es el más simple de los diseños. Todas las funciones son controladas únicamente por el pistón tapando y destapando los puertos, que son agujeros en un lado del cilindro, mientras mueve arriba y abajo el cilindro.
Barrido de lazo El método del cilindro con barrido de lazo utiliza puertos destinados a transferencia para barrer la mezcla fresca hacia arriba en uno de los lados del cilindro y hacia abajo en el otro lado, haciendo que la mezcla quemada sea empujada hacia delante y expulsada por una lumbrera de escape.El barrido de lazo o "Schnurle", por su inventor, es, de lejos, uno de los sistemas de barrido más utilizados.

Ventajas e inconvenientes

Ventajas
El motor de dos tiempos no precisa válvulas ni de los mecanismos que las gobiernan, por tanto es más liviano y de construcción más sencilla, por lo que resulta más económico.
Al producirse una explosión por cada vuelta del cigüeñal, frente a una cada dos vueltas de cigüeñal en el motor de cuatro tiempos, desarrolla más potencia para una misma cilindrada y su marcha es más regular.
Pueden operar en cualquier orientación ya que el cárter no almacena lubricante.

Inconvenientes
Este motor consume aceite, ya que la lubricación se consigue incluyendo una parte de aceite en el combustible. Este aceite penetra con la mezcla en la cámara de combustión y se quema pudiendo producir emisiones contaminantes y suciedad dentro del cilindro que en el caso de afectar a la bujía impide el correcto funcionamiento.
Su rendimiento es inferior ya que la compresión, en la fase de compresión-admisión, no es enteramente efectiva hasta que el pistón mismo cierra las lumbreras de transferencia y de escape durante su recorrido ascendente y es por esto, que en las especificaciones de los motores de dos tiempos aparecen muchas veces dos tipos de compresión, la compresión relativa ( relación entre los volúmenes del cilindro y de la cámara de combustión) y la compresión corregida, midiendo el cilindro solo desde el cierre de las lumbreras. Esta pérdida de compresión también provoca una pérdida de potencia.
Además, durante la fase de potencia-escape, parte del volumen de mezcla sin quemar (mezcla limpia), se pierde por la lumbrera de escape junto a los gases resultantes de la combustión provocando no solo una pérdida de rendimiento, sino más emisiones contaminantes.

Aplicaciones
Al ser un motor ligero y económico es muy usado en aplicaciones en que no es necesaria mucha potencia tales como motocicletas, motores fuera borda, motosierras, cortadoras de césped, etc. Su uso en automóviles y camiones ha sido ocasional pero nunca se ha consolidado. También en ocasiones se ha usado este tipo de motores para la generación de electricidad o para la navegación marítima.